AQA Chemistry

Question number	Answer	Marks	Guidance
1	trend: decreases	1	If trend is wrong you lose all the marks for this part.
	increase in size of atom or more levels in the atom	1	
	weaker attraction by the nucleus for delocalised electrons	1	You could say weaker metallic bonding but this will only score one of the two explanation marks
2	hydroxides: solubility increases	1	You need to learn these trends. They are almost always asked
	sulfates: solubility decreases	1	for.
	add: BaCl ₂ (aq) (or Ba(NO ₃) ₂ (aq))	1	You must state (aq). You cannot just have Ba2+ ions.
	with Na_2SO_4 , white precipitate is formed	1	
	NaNO ₃ , no change	1	
	$BaCl_2 + Na_2SO_4 \to BaSO_4 + 2NaCl$	1	You could write an ionic equation for this reaction by leaving out th spectator ions $Ba^{2+}(aq) + SO4^{2-}$ (aq) $\rightarrow BaSO^4(s)$
3 (a)	hydroxides: solubility increases from Mg to Ba	1	
	sulfates: solubility decreases from Mg to Ba	1	
3 (b)	add hydrochloric acid	1	HNO_3 or CH_3COOH can be allowed but not H_2SO_4 . (HCI gas not allowed.)
	add: BaCl ₂	1	$Ba(NO3)_2$ will also be accepted even though it is not the
	MgCl ₂ : no change or no reaction	1	recognised test.
	MgSO ₄ : white precipitate	1	If you added the wrong reagent then you cannot get the observation marks.
	$MgSO_4 + BaCl_2 \to BaSO_4 + MgCl_2$	1	The ionic equation will be accepted too.
3 (c)	reactivity increases down the group	1	
	$Ba + 2H_2O \rightarrow Ba(OH)_2 + H_2$	1	
4 (a)	Antacid <i>OR</i> to neutralise acidity <i>OR</i>	1	Credit suitable reference to indigestion or to laxative or to relief of constipation

AQA Chemistry

	eases indigestion		
4 (b)	 M1 Decrease in T decreases the energy of the particles / ions / H⁺ / molecules M2 (also scores M1) Decrease in the number of / less particles / ions / H⁺ / molecules with E ≥ E_{Act} or E ≥ minimum energy to react M3 Few(er) / Less effective / productive / successful collisions 	3	In M1 and M2, credit "atoms" but ignore "calcium carbonate", ignore "calcium", ignore any ion formula except H ⁺ QoL
4 (c) (i)	Strontium has a higher melting point than barium, because	2	Ignore general Group 2 statements Penalise M1 if Sr or Ba is said to
	cations/proximity of electrons M1 (For Sr) delocalised <u>electrons closer to</u> <u>cations / positive ions / atoms / nucleus</u> OR <u>cations / positive ions / atoms are smaller</u> OR <u>cation / positive ion / atom or it has fewer</u> <u>(electron) shells / levels</u>		have <u>more or less</u> delocalised electrons Ignore reference to shielding CE = 0 for reference to molecules or intermolecular forces or covalent bonds
	Relative strength of metallic bonding M2 (Sr) has <u>stronger</u> attraction between the <u>cations / positive ions / atoms / nucleus and the</u> <u>delocalised electrons</u> <i>OR</i> <u>stronger metallic</u> bonding (assume argument refers to Sr but accept converse argument for Ba)		Ignore "Van der Waals forces (between atoms)" but penalise if "between molecules"
4 (c) (ii)	$Sr + 2H_2O \rightarrow Sr(OH)_2 + H_2$	1	Or multiples
4 (d) (i)	2Mg + TiCl₄ →2MgCl2 + Ti	1	Or multiples
4 (d) (ii)	It or MgSO₄ is <u>soluble</u> OR forms a <u>solution</u> (and is washed away) OR <u>dissolves</u>	1	Credit reference to MgSO4 being the most soluble Group 2 sulfate. Ignore "disappears"
5 (a) (i)	Increases	1	
5 (a) (ii)	Decreases	1	
5 (a) (iii)	Increases	1	
5 (b)	Calcium has a higher melting point than strontium, because	2	CE = 0 for reference to molecule or intermolecular forces or covalent bonds
	Correct reference to size of cations/proximity of electrons		Ignore "Van der Waals forces (between atoms)" but penalise if between "molecules

AQA	Chemistry	
-----	-----------	--

	M1 (For Ca) delocalised <u>electron(s) closer to</u> cations / positive ions / nucleus OR cations / positive ions / atoms are smaller OR cation / positive ion / atom or it has fewer (electron) shells / levels Relative strength of metallic bonding M2 (For Ca) has stronger attraction between the cations / positive ions / nucleus and the delocalised electron(s) OR		Ignore general Group 2 statements Answers must be specific Penalise M1 if Ca or Sr is said to have more or less delocalised electrons Ignore reference to shielding
	stronger metallic bonding (assume argument refers to Ca but accept converse argument for Sr)		Ignore reference to smeluing
5 (c) (i)	Sulfuric acid / it contains sulfate ions / SO4 ^{2–} <i>OR</i> Sulfuric acid would form a (white) precipitate	1	Do not penalise an additional but incorrect formula for sulfate ion. If only the formula of the sulfate ion is given, it must be correct
5 (c) (ii)	$Ba^{2+} + SO_4^{2-} \rightarrow BaSO_4 ONLY$	1	Ignore state symbols No multiples
6 (a)	Cross between the Na cross and the Mg cross	1	
6 (b)	$\begin{array}{l} AI(g) \to AI^{+}(g) + e^{-} \\ AI(g) e^{-} \to AI^{+}(g) \\ AI(g) + e^{-} \to AI^{+}(g) + 2e^{-} \end{array}$	2	One mark for state symbols consequential on getting equation correct. Electron does not have to have the – sign on it Ignore (g) if put as state symbol with e but penalise state symbol mark if other state symbols on e
6 (c)	2 nd / second / 2 / II	1	Only
6 (d)	Paired electrons in (3)p orbital	1	Penalise wrong number
	repel	1	If paired electrons repel allow M2
6 (e)	Neon/ Ne	1	No consequential marking from wrong element
	1s ² 2s ² 2p ⁶ / [He]2s ² 2p ⁶	1	Allow capital s and p Allow subscript numbers
	Decreases	1	CE if wrong

AQA Chemistry

	Atomic radius increases/ electron removed further from nucleus or nuclear charge/ electron in higher energy level/ Atoms get larger/ more shells As group is descended more shielding	1	Accept more repulsion between more electrons for M2 Mark is for distance from nucleus Must be comparative answers from M2 and M3 CE M2 and M3 if mention molecules Not more sub-shells
7 (a) (i)	Ba + 2 H ₂ O Ba(OH) ₂ + H ₂	1	Ignore state symbols Credit multiples and correct ionic equations
7 (a) (ii)	(Reactivity with water) increase(s) / increasing / increased (down the Group / from Mg to Ba)	1	Accept "greater" or "gets more" or similar words to that effect. Ignore reference to "increase in solubility / gets more soluble"
7 (b)	Mg(OH) ₂	1	Accept Mg ²⁺ (OH ⁻) ₂ / Mg(HO) ₂ Insist on brackets and correct case
7 (c)	 M1 Barium meal / barium swallow / barium enema or (internal) X-ray or to block X-rays M2 BaSO₄ / barium sulfate is insoluble (and therefore not toxic) 	2	Accept a correct reference to M1 written in the explanation in M2 , unless contradictory For M2 NOT barium ions NOT barium NOT barium meal and NOT "It" Ignore radio-tracing